Protoplast Isolation and Transformation in *Tragopogon*

Protocol

- 1. Prepare D-mannitol Solution
 - Make sure it is fully dissolved; transfer into a sterilized 50 ml flask
- 2. Prepare the Enzyme Solution
- 3. Prepare plant material
 - Cut healthy and young *Tragopogon* seedling (2-3 weeks in ½ MS germination medium) leaves into 0.5 mm small pieces
 - Before cutting, blot the leaves on Kimwipes
 - Slice the leaves on a piece of glossy paper (from flyers/magazines) with a blade; do not press the blade vertically

- To avoid over-dry, transfer the small leaf pieces into the D-mannitol buffer occasionally
- Transfer the small leaf pieces into D-mannitol solution, and shake at 30-50 rpm, room temperature for ~15 min; the flask is covered by foil
 - Make sure all leaf pieces are in the solution
- 5. Remove the D-mannitol solution using a trimmed 1 ml pipette tip; avoid taking plant materials away
- 6. Add enzyme solution from step 2 into the flask
 - As softly as possible using trimmed pipette tip
 - Make sure all leaf pieces are in the solution
- 7. Vacuum for ~45 min under dark

- 8. Shake (30-40 rpm; 25-26 °C; under dark) for ~5 hours
 - Check the results regularly
- 9. Filter the enzyme solution (containing protoplasts) through 40 μ m nylon meshes
 - Shake the flask slowly before transfer (avoid the protoplasts sink at the bottom)
 - Using trimmed tips
 - Add W5 Solution, wash the flask

first, and then transfer the solution onto the nylon meshes

- 10. Wash the protoplast using 21% Sucrose Solution (2.1 g sucrose in 10 ml water)
 - Add 5 ml 21% sucrose into a 15 ml round bottom falcon tube
 - Using trimmed tips, add protoplast solution (~ 5ml) from the petri dish softly on top of the 21% sucrose buffer; therefore, 4 tubes are needed as the volume of the protoplast solution is > 15 ml (15 ml enzyme solution + W5 solution)
 - Swirl the petri dish slowly when transferring protoplast solution (protoplasts are at the bottom); petri dish can be washed by W5 solution
- 11. Centrifuge at 250 g for 3 min
- 12. Take away the middle layer (containing protoplasts) Enzyme solution (containing protoplasts)
 - About 2 ml
 - When pipetting, move the trimmed tip around the tube
 - Before pipetting protoplasts, could take away part of the top layer (~ 2ml) first
- 13. Wash the protoplast using W5 solution
 - Add 3 ml W5 solution into a new 15 ml falcon tube
 - Add protoplasts solution (~2 ml) softly into the tube; mix gently and slowly
 - Add 2 ml W5 solution; mix gently and slowly
- 14. Centrifuge at 250 g for 3 min
- 15. Remove supernatant using trimmed tips
- 16. Wash the protoplasts again using W5 solution
 - Add 2 ml W5 solution into the tube; mix gently and slowly

- Add another 2 ml W5 solution; mix gently and slowly
- 17. Centrifuge at 100 g for 2 min
- 18. Remove supernatant using trimmed tips
- 19. Add 1 ml W5 solution, and put the tube on ice for 30 min (under light)
 - If using 4 tubes at step 10), mix two tubes into one at this step. Therefore, there will have two tubes, with 2 ml W5 solution in each one
- 20. Centrifuge at 100 g for 2 min
- 21. Remove the supernatant, and add 400 μI MMG Solution in each tube; mix gently and slowly
 - If there are 2 tubes, there will have 800 μI MMG, which would be enough for 3 transformations
- 22. For each transformation, in the 2 ml tube (follow the order below)
 - Add 30 µl plasmid (10 µg for <u>each</u> construct)
 - Add 200 µl MMG (containing protoplast), and mix
 - Add 230 µl fresh PEG-4000 Solution, mix gently and slowly
- 23. Put the 2 ml tube under dark for 15 min at room temperature
- 24. Wash by W5 solution
 - Add 460 µl (1X volume) W5 solution; mix gently and slowly
 - Add 920 µl (2X volume) W5 solution; mix gently and slowly
- 25. Centrifuge at 250 g for 3 min
- 26. Remove the supernatant
- 27. Add 400 μl W5 solution into each 2 ml tube; mix gently and slowly
- 28. Prepare the cell culture plate
 - Coat the plate with 5% BSA (~600 μ l)
- 29. Transfer 400 μl W5 solution (containing protoplasts) into the well
- 30. Cover cell culture plate using foil

Solution

D-mannitol Solution

	For 10 ml	For 15 ml	Final concentration
D-mannitol	1.09 g	1.635 g	0.6 M
H ₂ O	9.5 ml	14.25 ml	

Enzyme Solution

Add in (order Wor	king solution	Stock solution	For 50 ml	For 15 m
1)	ddH	20		25 ml	7.5 ml
2)	0.4 ľ	M mannitol	1 M mannitol	20 ml	6 ml
3)	10 n	M MES (pH 5.7; KOH)	0.5 M MES	1 ml	0.3 ml
	Preheat the s	solution at 70 °C for 3-5	min to activate th	e enzymes added	later
4)	1.5%	6 Cellulase RS		0.75 g	0.225 g
5)	0.75	% Macerozyme R-10		0.375 g	0.125 g
War	m the solution at 5	60°C for 10 min to inactivat	e DNase and proteas	e, and enhance enz	yme solubility
	Cool the solu	ition at 25 °C/RT; the final	enzyme solution sho	uld be clear light bro	own
	10 n	nM CaCl ₂	1 M CaCl ₂	500 μl	150 μl
	0.1%	6 BSA	5% BSA	1 ml	300 μl
	20 n	nM KCl	0.5 M KCl	2 ml	600 μl
	5 ml	M β-mercaptoethanol	13.4 M ???	17.5 μl	5.6 μl
	Filter the final	enzyme solution throug	gh a 0.45 μm syrin	ge filter into a pet	ri dish

W5 Solution

	For 50 ml	Final concentration	
MES (0.5 M; KOH, pH 5.7)	200 μl	2 mM	
NaCl (1 M)	7.7 ml	154 mM	
CaCl ₂ (1 M)	6.25 ml	125 mM	
KCI (0.5 M)	0.5 ml	5 mM	
H ₂ O	~35.35 ml		
Store at room temperature			

MMG Solution

	For 10 ml	Final concentration
MES (0.5 M; KOH, pH 5.7)	80 μl	4 mM
Mannitol (1 M)	4 ml	0.4 M
MgCl ₂ (1 M)	150 μl	15 mM
H ₂ O	Up to 10 ml	
Store at room temperature		

PEG-4000 Solution

	For 1 ml	For 5 ml	Final concentration
PEG-4000	0.4 g	2 g	
Mannitol (1 M)	400 μl	2 ml	0.4 M
CaCl ₂ (1 M)	100 μl	0.5 ml	0.1 M
H ₂ O	140 μl	700 μl	